GPU Accelerated Particle System for Triangulated Surface Meshes

نویسندگان

  • Brad Peterson
  • Manasi Datar
  • Mary Hall
  • Ross Whitaker
چکیده

Shape analysis based on images and implicit surfaces has been an active area of research for the past several years. Particle systems have emerged as a viable solution to represent shapes for statistical analysis. One of the most widely used representations of shapes in computer graphics and visualization is the triangular mesh. It is desirable to provide a particle system representation for statistical analysis of meshes. This paper presents a framework to distribute particles over a surface defined by a triangle mesh and provides an efficient and controllable mechanism to sample shapes defined by triangular meshes within a locally adaptive scheme. We propose GPU implementations to leverage inherent data parallelism. Results on triangular meshes representing synthetic and real shapes demonstrate speedups on the GPU upto 341X as compared to the CPU implementation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Semi-Regular 4-8 Meshes for Subdivision Surfaces

Semi-regular 4–8 meshes are refinable triangulated quadrangulations. They provide a powerful hierarchical structure for multiresolution applications. In this paper, we show how to decompose the DooSabin and Catmull-Clark subdivision schemes using 4–8 refinement. The proposed technique makes it possible to use these classical subdivision surfaces with semi-regular 4–8 meshes. Additional

متن کامل

A GPU-accelerated Boundary Element Method and Vortex Particle Method

Vortex particle methods, when combined with multipole-accelerated boundary element methods (BEM), become a complete tool for direct numerical simulation (DNS) of internal or external vortex-dominated flows. In previous work, we presented a method to accelerate the vorticity-velocity inversion at the heart of vortex particle methods by performing a multipole treecode N-body method on parallel gr...

متن کامل

Non structured meshes for Cloth GPU simulation using FEM

We present a Finite Element Method (FEM) implementation for cloth simulation on the GPU. The advantages of FEM are twofold: the realism of cloth simulations using this method is improved compared with other methods like the widely used mass-spring one, and it has a wider application rank because it can be used for general triangulated cloth meshes. We are able to detect collisions between cloth...

متن کامل

GPU surface extraction using the closest point embedding

Isosurface extraction is a fundamental technique used for both surface reconstruction and mesh generation. One method to extract well-formed isosurfaces is a particle system; unfortunately, particle systems can be slow. In this paper, we introduce an enhanced parallel particle system that uses the closest point embedding as the surface representation to speedup the particle system for isosurfac...

متن کامل

Multiresolution GPU Mesh Painting

Mesh painting is a well accepted and very intuitive metaphor for adding high-resolution detail to a given 3D model: Using a brush interface, the designer simply paints fine-scale texture or geometry information onto the surface. In this paper we propose a fully GPU-accelerated mesh painting technique, which provides real-time feedback even for highly complex meshes. Our method can handle arbitr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010